

Empirical Modeling of Solar Radiation Pressure Forces Affecting GPS Satellites

Ant Sibthorpe, Jan Weiss, Nate Harvey, Da Kuang and Yoaz Bar-Sever

> Jet Propulsion Laboratory, California Institute of Technology

AGU Fall Meeting, San Francisco

Dec 17, 2010

Outline

- Motivation
- Empirical Solar Radiation Pressure Modeling
- Internal Metrics
 Ambiguity Resolution, Orbit Overlaps
- External Metrics Satellite Laser Ranging
- Orbit Prediction
- Conclusion

June 2009 to June 2010

June - Nov 2010

Terminology

Precise Orbit Determination (POD)

Solar Radiation Pressure (SRP)

• SRP Model (today's focus!):

A priori representation of SRP forces acting on a spacecraft

• SRP Strategy:

Approach to estimating SRP forces during POD Does not explicitly require an a priori SRP model

Motivation

- GPS Solar Pressure Model Bar-Sever & Kuang (2004, 2005)
- Based on 4.5 years of precise orbits (Jan 1998 June 2002)
- Truncated Fourier series coefficients combined from 10-day fits
- β -angle dependent SX₂ and CY₁ terms
- Block specific models (IIA/IIR)

$$F_{x} = \frac{k10^{-5} (AU/r)^{2}}{m \sum_{i=1,2,3,5,7} SX_{i} \sin(iEPS)}$$

$$F_{y} = \frac{CY_{0} + 10^{-5} (AU/r)^{2}}{m \sum_{i=1,2} CY_{i} \cos(iEPS)}$$

$$F_{z} = \frac{k10^{-5} (AU/r)^{2}}{m \sum_{i=1,3,5} CZ_{i} \cos(iEPS)}$$

k dimensionless scale factorm spacecraft mass (kg)EPS Earth-Probe-Sun angle

- GNSS Solar Pressure Model (GPS & GLONASS)
- More rigorous combination of coefficients from 10-day fits
- Improved modeling of β -angle dependent terms SX₂ and CY₁
- For GPS 13.5 years of precise orbits (Jan 1997 May 2010)
- Separate GPS models for:

IIA (non-eclipsing only)

IIR-A & IIR-B (excluding GPS43 & 46)

IIR-A & IIR-B (GPS43 & GPS46 only)

IIR-M

Model Comparison

POD Results

Daily orbit & clock solutions computed from:

- GSPM04
- GSPM10

across the period June 2009 to June 2010.

Identical input data, software (GIPSY-OASIS) and strategies

Ambiguity Resolution

	Mean	1-σ
GSPM04	73.0	1.4
GSPM10	78.6	1.4

Values in %

Ambiguity Resolution

Orbit Overlaps

Maximum (across available satellites) 1D RMS values of day-to-day overlap differences.

Median (across available satellites) 1D RMS values of day-to-day overlap differences.

Non-eclipsing		GSPM04	GSPM10
satellites only		Mean	Mean
	Maximum	2.33	2.28
	Median	1.31	1.25

Values in cm

Satellite Laser Ranging

Orbit Prediction

Orbit Prediction

Non-eclipsing GPS IIR 4th day prediction error difference by beta angle (GSPM04 – GSPM10). Positive values indicate improvement from GSPM10.

- GSPM10 14 years of data, models for IIA, IIR-A/B, IIR-M
- Assessing orbit accuracy is becoming increasingly demanding
- Orbit overlaps and satellite laser ranging are capable of differentiating the GSPM solutions
- GSPM10 model performance strongly supported in <u>GIPSY</u> by: Ambiguity resolution statistics Orbit prediction (better sampling and β-angle dependency)

Future Work

- IIA eclipsing model
- Iterate as more data becomes available
- IIF
- GSPM10 update for GLONASS due to new attitude model (Weiss et al., AGU 2010, poster)