IGS Classic Products, Status and Towards the Future

Jake Griffiths

Kevin Choi

NOAA/NGS, USA

IGS Core Product Series

Series	ID	Latency	Issue times (UTC)	Data spans (UTC)	Remarks
Ultra-Rapid (predicted half)	IGU	real-time	@ 03:00, 09:00, 15:00, 21:00	+24 hr @ 00:00, 06:00, 12:00, 18:00	for real-time appsGPS & GLONASSissued with prior IGA
Ultra-Rapid (observed half)	IGA	3 - 9 hr	@ 03:00, 09:00, 15:00, 21:00	-24 hr @ 00:00, 06:00, 12:00, 18:00	for near real-time appsGPS & GLONASSissued with following IGU
Rapid	IGR	17 - 41 hr	@ 17:00 daily	±12 hr @ 12:00	for near-definitive, rapid appsGPS only
Final	IGS	12 - 19 d	weekly each Thursday	±12 hr @ 12:00 for 7 d	for definitive appsGPS & GLONASS

Popularity of IGS Core Products (1/2)

- download statistics @ NASA/CDDIS (06/2010 thru 06/2012) -

- >3.6 million file downloads per month!
 - total for all product lines (IGS, IGL, IGR, IGU, and experimental IGV)
- 5 biggest users of CDDIS/IGS files:
 - United States @ 64.3%
 - from >11,300 IP addresses
 - Indonesia @ 19.3%
 - from ~250 IP addresses
 - Canada @ 1.64%
 - Sweden @ 1.57%
 - Belgium @ 1.16%
- Overall, which products are downloaded most/least?

Courtesy: C. Noll (NASA/CDDIS)

Popularity of IGS Core Products (2/2)

- download statistics @ NASA/CDDIS (06/2010 thru 06/2012) -

Some details over past 6 months

Product	GNSS	Total Hits	SP3 (%)	ERP (%)	CLK (%)	SNX (%)	SUM (%)
IGU/IGA	GPS	11,711,506 (≈4 * 2,927,877 daily)	93.7	3.1			3.2
IGS+IG1	GPS	1,359,656	60.7	6.8	24.8	5.8	2.0
IGR	GPS	887,986	65.6	8.7	16.9		6.4
IGL	GLO	225,515	99.1		0.3		0.6
IGV	GPS & GLO	223,562	95.0				5.0

Courtesy: C. Noll (NASA/CDDIS)

IGS Core Product Accuracies (2011)

Series	ID	Product Types	Accuracies	Output Intervals
Ultra-Rapid (predicted half)		GPS orbits	~ 5 cm (1D)	15 min
	IGU	GLONASS orbits	~10 cm (1D)	15 min
	IGU	GPS SV clocks	~3 ns RMS / ~1.5 ns Sdev	15 min
		● EOPs: PM + dLOD	~250 μas / ~50 μs	6 hr
Ultra-Rapid (observed half)	IGA	 GPS orbits GLONASS orbits 	~ 3 cm (1D) ~5 cm (1D)	15 min 15 min
		GPS SV clocksEOPs: PM + dLOD	~150 ps RMS / ~50 ps Sdev <50 μas / ~10 μs	15 min 6 hr
Rapid	IGR	GPS orbitsGPS SV & station clocksEOPs: PM + dLOD	~2.5 cm (1D) ~75 ps RMS / ~25 ps Sdev <40 μas / ~10 μs	15 min 5 min daily
Final	IGS	 GPS orbits GLONASS orbits GPS SV & station clocks EOPs: PM + dLOD Terrestrial frames 	<2.5 cm (1D) <5 cm (1D) ~75 ps RMS / ~20 ps SDev <30 μas / ~10 μs ~2 mm N&E / ~5 mm U	15 min 15 min 30 s (SVs) + 5 min daily weekly

see Rotational Errors in IGS Orbit and ERP Products, by J. Ray
Thursday AM @ 08:30

IGS Ultra Orbit Predictions Compared to Rapids

IGU 6hr Prediction Differences (mm @ GPS altitude)										
	dX	dY	dZ	RX	RY	RZ	SCL	RMS	wRMS	Medi
2008	2.9	0.4	0.3	-4.2	-1.1	0.7	-3.0	>>>	24.6	18.4
±	4.5	4.4	3.6	20.8	22.6	35.8	3.2	>>>	6.4	2.9
2009	3.5	-0.6	0.3	0.3	0.8	3.1	-0.7	28.9	21.3	15.6
±	4.7	4.9	3.4	13.9	16.4	27.3	2.6	19.7	8.0	2.6
2010	3.4	0.4	-0.3	1.9	-0.4	2.3	-1.0	28.7	21.5	15.6
±	5.2	4.9	3.2	14.0	16.5	25.7	2.6	31.2	13.5	2.6
2011	2.5	0.5	-1.1	2.2	-0.9	2.1	-0.2	27.0	20.5	15.3
±	5.2	5.4	3.2	14.1	16.8	22.4	2.3	24.4	6.6	2.6
	IGU 2	24hr P	redict	ion Dif	ference	es (mr	m @ GF	S altit	ude)	
2008	1.0	1.0	-0.0	-5.8	-3.5	-2.9	-3.2	72.6	52.6	33.9
±	2.0	1.9	3.9	31.6	35.7	61.4	2.7	42.4	15.4	6.4
2009	1.1	0.3	-0.1	-0.5	-0.6	-0.9	-1.3	64.7	47.3	30.2
±	1.8	2.0	3.8	22.0	31.3	52.1	1.9	33.3	16.3	6.0
2010	0.6	0.9	-1.4	5.5	-2.9	0.1	-1.8	70.3	47.0	30.1
±	2.1	2.0	3.8	23.8	32.6	50.1	2.1	171.7	25.3	5.7
2011	0.6	1.4	-2.1	5.9	-3.2	-2.4	-0.5	59.4	45.3	30.5
±	1.9	2.1	3.6	25.6	31.9	42.8	1.7	25.2	14.1	5.4

^{*} rotations are equatorial @ GPS altitude; 24hr predictions from 00 UTC IGUs only

IGS Ultra Orbit Predictions Compared to Rapids

due to UT1 prediction errors

	וזוט no	es (mm	@ GPS aititude)							
	dX	dY	dZ	RX	RY	RZ	SCL	RMS	wRMS	Medi
2008	2.9	0.4	0.3	-4.2	-1.1	0.7	-3.0	>>>	24.6	18.4
±	4.5	4.4	3.6	20.8	22.6	35.8	3.2	>>>	6.4	2.9
2009	3.5	-0.6	0.3	0.3	3.0	3.1	-0.7	28.9	21.3	15.6
±	4.7	4.9	3.4	13.9	16.4	27.3	2.6	19.7	8.0	2.6
2010	3.4	0.4	-0.3	1.9	-0.4	2.3	-1.0	28.7	21.5	15.6
±	5.2	4.9	3.2	14.0	16.5	25.7	2.6	31.2	13.5	2.6
2011	2.5	0.5	-1.1	2.2	-0.9	2.1	-0.2	27.0	20.5	15.3
±	5.2	5.4	3.2	14.1	16.8	22.4	2.3	24.4	6.6	2.6
	IGU 2	24hr P	redict	ion Dif	ferenc	es (mn	@ GPS altitude)			
2008	1.0	1.0	-0.0	-5.8	-3.5	-2.9	-3.2	72.6	52.6	33.9
±	2.0	1.9	3.9	31.6	35.7	61.4	2.7	42.4	15.4	6.4
2009	1.1	0.3	-0.1	-0.5	-0.6	-0.9	-1.3	64.7	47.3	30.2
±	1.8	2.0	3.8	22.0	31.3	52.1	1.9	33.3	16.3	6.0
2010	0.6	0.9	-1.4	5.5	-2.9	0.1	-1.8	70.3	47.0	30.1
±	2.1	2.0	3.8	23.8	32.6	50.1	2.1	171.7	25.3	5.7

31.9

42.8

-0.5

1.7

59.4

25.2

45.3

14.1

30.5

5.4

5.9

25.6

2011

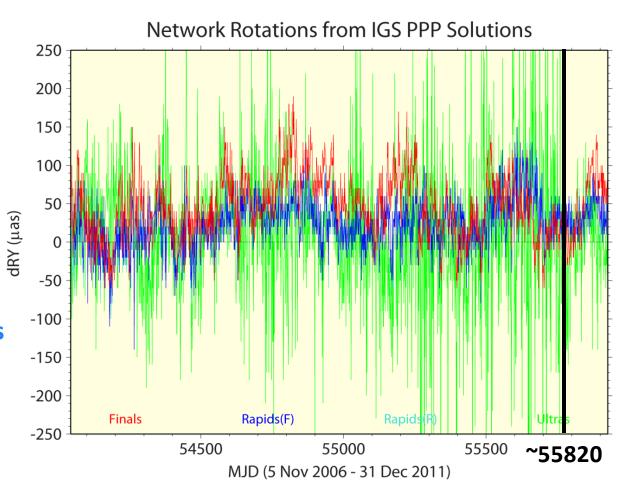
 \pm

0.6

1.9

1.4

2.1


-2.1

3.6

^{*} rotations are equatorial @ GPS altitude; 24hr predictions from 00 UTC IGUs only

Persistent Rotational Scatter in IGU products

- About half of total IGU error
- Reduced since midSep. 2011 (MJD
 55820), when combi.
 toler. changed
- Possible sources
 - errors in a priori EOPs
 - poor IGU clocks
 - rotational misalignment of IGU orbits

Currently testing new orbit combination approach in IGV

Initial Results from New Testing in IGV

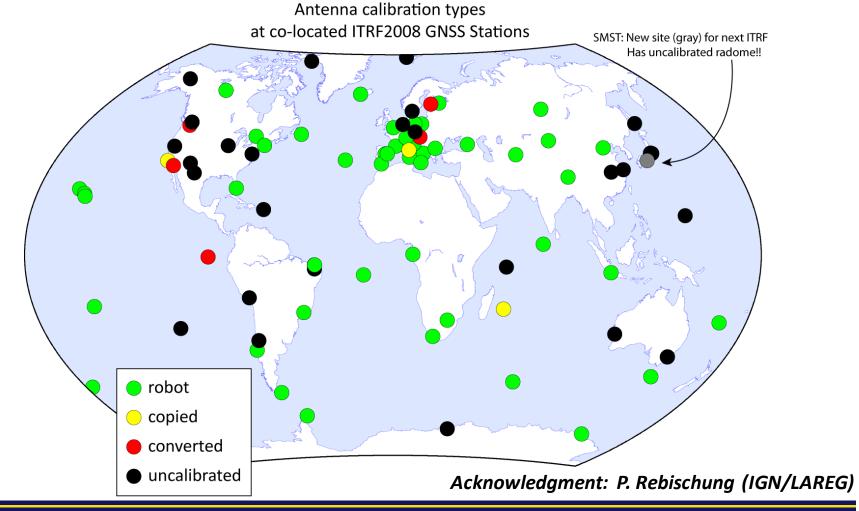
Operational IGU

- GPS only (5/9 ACs WHU & NGU new; used only for comparison)
- uses all 48h (observed & predicted) parts to align AC orbits

Experimental IGV

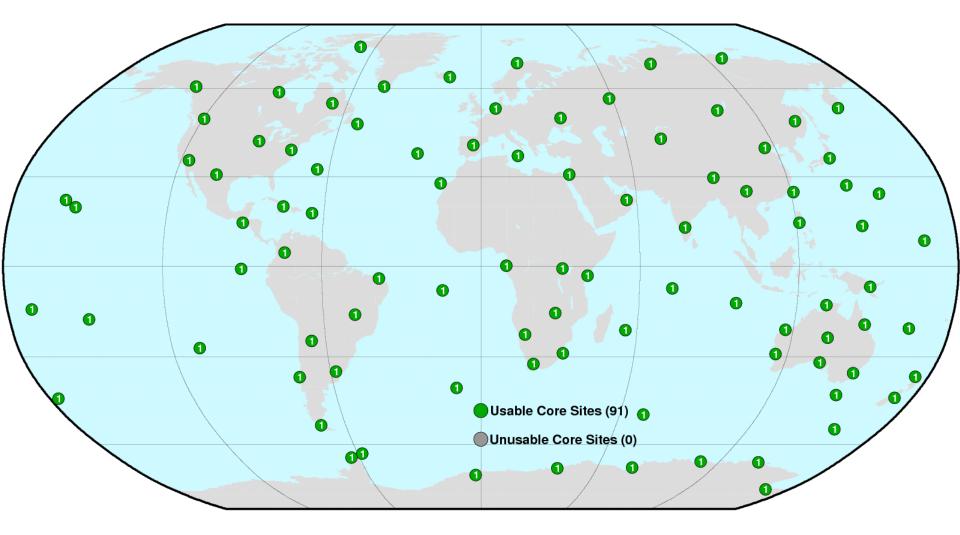
- mixed GPS (5/9 ACs) & Glonass (4/4 ACs)
- uses first 24h (observed) part to align AC orbits
 - improves agreement w/ IGR
 - rotational misalignments still significant

	[mm]	[mm]	[mm]	[uas]	RY [uas]	[uas]	[ppb]	RMS [mm]	WRMS [mm]
igu-igr + / -	0.87	-0.10	-0.66	24.33	-21.50	5.56	-0.020		8.33 1.35
igv-igr + / -	•								8.12 1.37

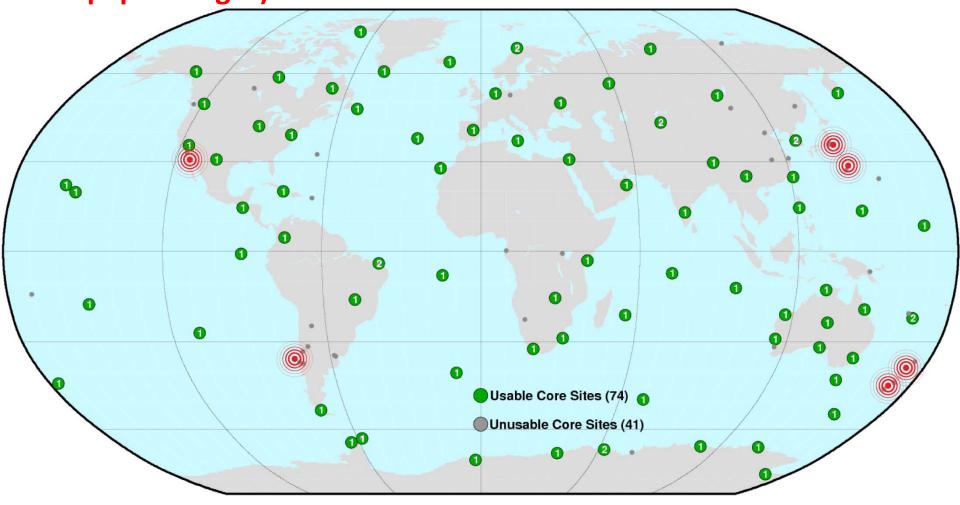

100 was \approx 13 mm @ GPS

Based on 3 weeks: 1693 thru 1696

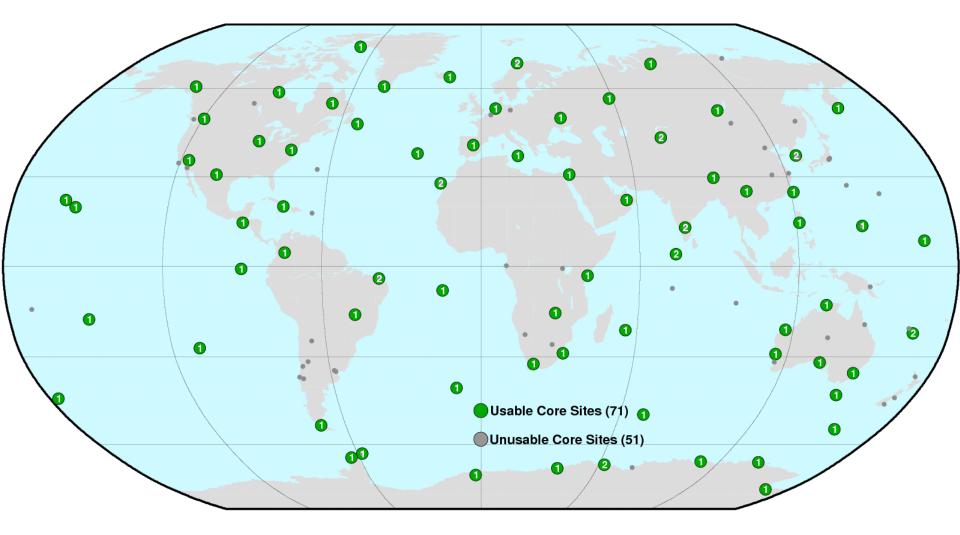
Other Challenges: Uncalibrated Radomes


- 28/92 (≈ 30%) co-located sites have an uncalibrated radome
 - nearly half (13/28) operated by JPL

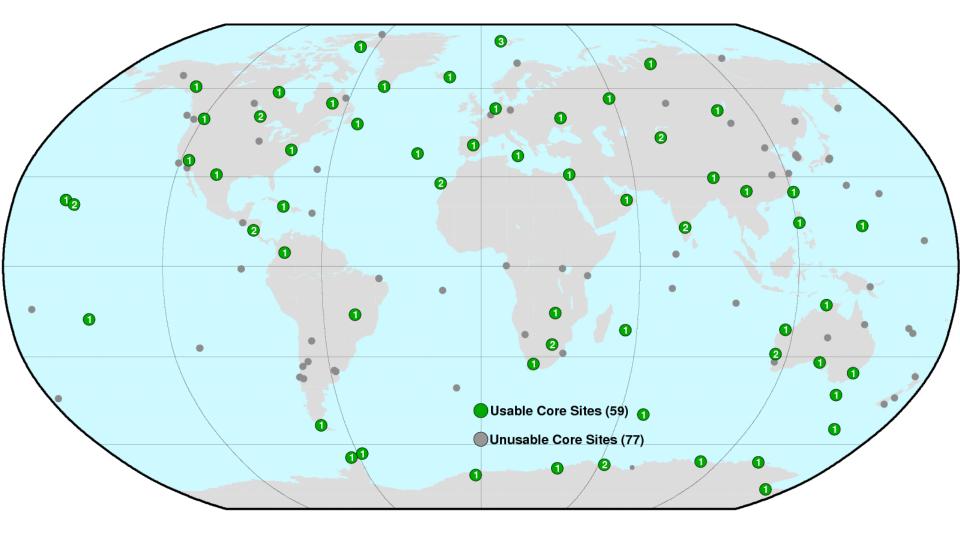
Other Challenges: Loss of IGS08 Core Stations (1/4)


Primary core network @ 2009.5 (best case—all data avail.)

Other Challenges: Loss of IGS08 Core Stations (2/4)


Wk 1632: IGS08 adopted; ~22 primary already lost (e-quakes & equip. changes)

Other Challenges: Loss of IGS08 Core Stations (3/4)


Today: ~71 useable sites (assumes all data are available)

Other Challenges: Loss of IGS08 Core Stations (4/4)

Today: accounting for data availability, ~59 useable core sites

Summary of Persistent Challenges

- Rotational errors in all products; largest in IGU
- Uncalibrated radomes at co-location sites
 - one recently available at SMST!! (co-located w/ SLR; unavail. for ITRF2008)

see Strengths and Weaknesses of the IGS Contribution to ITRF, by Z. Altamimi Friday AM @ 9:06

- Loss of IGS08 core stations
 - anthropogenic site disturbances (incl. many equip. changes)
 - data loss, and earthquakes & other physical processes
- Known biases and other systematic errors
 - harmonic and sub-daily alias errors in all IGS products
 - site-specific errors [e.g., Wetzell observations by Steigenberger et al., REFAG2010]

see BRUX: A New EPN and IGS Reference Station in Brussels, by W. Aerts
Tuesday PM (1:30 – 3:00)

see Investigation of Non-Tectonic Signals at GPS Stations, by C. Meertens
Wednesday AM @ 09:50

Upcoming Events

- Switch to Finals products based on daily TRF integrations
 - to facilitate further study of non-tidal loading effects
 - station position RMS increases by factor of 1.0 to 1.5 (mostly in E & U)
 - 0.5 mm RMS increase in orbit
 - 2.5 ps RMS increase over clock ensemble
 - kinematic PPP results show that impact to users is very small
 - CODE orbits & SNX will be included for comparison only
 - may yield better internal consistency due to removal of AC over-constraints
 - see IGSMail #6613 for more details
- Next reprocessing (details at acc.igs.org/reprocess2.html)
 - expect to finalize analysis standards this week!
 - should result in improved inter-AC agreement & reduced systematic errors
 - but some issues not likely to be resolved
 - to remain: sub-daily tidal EOP errors & tracking station inadequacies
 - aiming for early 2014 delivery of combined SNX for next ITRF

Recommendations

- Need more Ultra-rapid (IGU & IGV) ACs
- Further study of IGU <-> IGR <-> IGS inconsistencies
- Improve tracking stations, esp at co-location sites
 - remove uncalibrated radomes
 - prevent/eliminate unnecessary antenna changes
 - study electronic instability and other local effects
 - RF and co-located stations to be closely monitored by a dedicated Network
 Coordinator
- Update IERS model for sub-daily EOP tidal variations
- Finalize analysis standards for repro2 (this week!)
 - RF and co-located stations to be processed with priority
 - AC networks to be as stable & connected (in time) as possible
 - aiming for early 2014 delivery of combined SNX files for ITRF2013
 - consider excluding co-location sites w/ uncalibrated radomes in ITRF combination (ACs should still process their data)

Extra Slides

