Rotational Evaluations of Global Geophysical Fluid Models and Improvement in the Annual Wobble Excitation

Wei Chen & WenBin Shen Department of Geophysics, School of Geodesy & Geomatics, Wuhan University <u>daniel135@126.com, 5 July 2011</u>

Introduction

- To study the climate variations and the interactions between the solid Earth and its fluid envelope, various atmospheric, oceanic and hydrological models are established
 - NCEP/NCAR (National Centers for Environmental Prediction / National Center for Atmospheric Research) reanalyses: AAM, HAM
 - ECMWF (European Centre for Medium-Range Weather Forecasts) reanalyses: AAM, OAM, HAM
 - JMA (Japan Meteorological Agency) products: AAM
 - UKMO (United Kingdom Meteorological Office) products: AAM
 - ECCO (Estimating the Circulation and Climate of the Ocean) Assimilation products: OAM
 - GLDAS (Global Land Data Assimilation System) products: HAM

Introduction

- Model Evaluation I
- Model Evaluation II
- Effects of FDR
- Conclusions
- Acknowledgement
- References

Introduction

- Consistencies among these atmospheric, oceanic and hydrological models are quite important
 - Consistency: the models of the ocean and hydrology should be driven by outputs from the same atmospheric model as it had been used to derive the AAM (Brzezinski, 2011, private communication)
- Four consistent data sets are used (with the IB model based on a private communication with Richard Gross, 2010)
 - NCEP AAM + ECCO OAM + NCEP HAM (since 1948)
 - ECMWF ERA40 AAM + OAM + HAM (1958 ~ 2001)
 - ECMWF ERAinterim AAM + OAM + HAM (since 1989)
 - ECMWF operational AAM + OAM + HAM (since 2000)

Introduction

- Model Evaluation I
- Model Evaluation II
- Effects of FDR
- Conclusions
- Acknowledgement
- **References**

Model Evaluations I: Daily data

Data used

- IERS EOP 08 C04 (1993 ~ 2008)
- NCEP reanalysis AAM + ECCO kf080 OAM + NCEP reanalysis / GLDAS HAM (1993 ~ 2008)
- ECMWF ERA40 (1993 ~ 2001) plus ECMWF operational (2002 ~ 2008) AAM + OAM + HAM

(ERAinterim data don't own significant difference against this data set, and thus will not be shown here; However, ERAinterim data will be displayed in Model Evaluations II: 6-hour data)

Introduction

- Model Evaluation I
- Model Evaluation II
- Effects of FDR
- Conclusions
- Acknowledgement
- References

Time Series Comparisons (1d)

Time Series Comparisons (1d)

GLDAS(Yan).HE (cyan line) is provided by Dr. Haoming Yan
 GLDAS.HE (red line) is our estimate

- Introduction
- Model Evaluation I
- Model Evaluation II
- Effects of FDR
- Conclusions
- Acknowledgement
- References

THIS IS A POWERPOINT

Time Series Comparisons (1d)

Residuals are large and models need to be improved!

THIS IS A POWERPOINT PRESENT/

Spectrum Comparisons (1d)

Introduction

- Model Evaluation I
- Model Evaluation II
- Effects of FDR
- Conclusions
- Acknowledgement
- **References**

Spectrum Comparisons (1d)

Introduction

- Model Evaluation I
- Model Evaluation II
- Effects of FDR
- Conclusions
- Acknowledgement
- References

Coherence Comparisons (1d)

Effect of debias (1d)

Debias removes the low-frequency discrepancies

- Introduction
- Model Evaluation I
- Model Evaluation II
- Effects of FDR
- Conclusions
- Acknowledgement
- References

Effect of debias (1d)

Power Loss

30

몧 PSD in

-40

-50

-150

The IERS C04 EOP data seems to be oversmoothed compared to the IGS EOP and the geophysical excitations

Model Evaluations II: 6-h data

Data used (2004 ~ 2010)

- IGS EOP: ig1+igs+igu.erp (6-hour data; provided by Prof. Jim Ray)
- NCEP reanalysis AAM (6h) + ECCO kf080 OAM (#) + NCEP reanalysis HAM (#)
- ECMWF operational AAM (6h) + OAM (6h) + HAM (#)
- ERAinterim AAM (6h) + OAM (6h) + HAM (#)
- COMB: combined AAM (6h) + OAM (6h) + HAM (6h)

(#) originally daily, linearly interpreted to 6-hour data

- Introduction
- Model Evaluation I
- Model Evaluation II
- Effects of FDR
- Conclusions
- Acknowledgement
- References

Time Series Comparisons (6h)

The residual for COMB is a little smaller!

- Introduction
- Model Evaluation I
- Model Evaluation II
- Effects of FDR
- Conclusions
- Acknowledgement
- References

Coherence Comparisons (6h)

Introduction

- Model Evaluation I
- Model Evaluation II
- Effects of FDR
- Conclusions
- Acknowledgement
- References

THIS IS A POWERPOINT PRESENTATIO

The COMB is the most coherent with the Obs!

Spectrum Comparisons (6h)

The PSD for COMB agrees best with the Obs!

Introduction

- Model Evaluation I
- Model Evaluation II
- Effects of FDR
- Conclusions
- Acknowledgement
- References

Frequency-dependent Response (FDR)

Introduction

- Model Evaluation I
- Model Evaluation II
 - Effects of FDR
- **Conclusions**
- Acknowledgement
- References

Spectrum Comparisons (6h)

Taking into account the FDR will be still better!

- Introduction
- Model Evaluation I
- Model Evaluation II
- Effects of FDR
- Conclusions
- Acknowledgement
- References

Comparisons of AW Excitation

	A_p (mas)	α_p (deg)	A_r (mas)	α_r (deg)
20BS	19.0226	-63.3790	<mark>9.3598</mark>	-133.9719
$\chi_{ ext{ECMWFop}}$	21.4724	-76.9744	11.7103	-138.2239
$\chi_{ ext{ERAinterim}}$	21.4901	-59.8073	8.7894	-144.5591
$\chi_{ m NCEPECCO}$	12.5831	-60.3468	12.5226	-153.8468
$\chi_{ m COMB}$	16.4714	-55.4271	9.4278	-148.6883
X FDR	20.7431	-54.6075	9.7328	-149.6897

- Introduction
- Model Evaluation I
- Model Evaluation II
 - Effects of FDR
- Conclusions
- Acknowledgement
- References

Conclusions

- Hydrological models are less reliable than the atmospheric and oceanic ones
- Hydrological models might contain some long-period biases
- IERS C04 EOP: over-smoothed; suitable for longperiod (> one week) excitations
- IGS EOP: suitable for short-period (<= one week) excitations, but the IB/DB effects should be determined first

- Introduction
- Model Evaluation I
- Model Evaluation II
- Effects of FDR
- Conclusions
- Acknowledgement
- References

Conclusions

- Coherence between the geodetic and the geophysical excitations goes down around and above 50 cpy
 - Due to the deficiency of the IB model
 - If we use the CO4 EOP data, it is at least partly caused by the artificial power loss of the EOP data
 - The break-down point (period) for the IB model might be around one week
- Combined AAM + OAM + HAM might be better
- Considering the FDR can bring notable improvement to the estimate of the AW excitation

- Introduction
- Model Evaluation I
- Model Evaluation II
- Effects of FDR
- Conclusions
- Acknowledgement
- References

Acknowledgement

- Prof. Jim Ray (IGS Analysis Center Coordinator) kindly generated a special version of the IGS EOP data, and provided us important information on different versions of the EOP data
- Prof. Aleksander Brzezinski provided us valuable comments and suggestions on the original abstracts
- W. Chen has consulted Prof. Richard Gross on the IBassumption and the ECCO/JPL model
- Dr. Haoming Yan provided us his estimate of the GLDAS HE

- Introduction
- Model Evaluation I
- Model Evaluation II
- Effects of FDR
- Conclusions
- Acknowledgement
- References

References

- Chen, W., Shen W. B. (2011) Effects of the Earth's Triaxiality and Frequency-dependent responses on the polar motion excitations, J. Geodyn, submitted.
- Dobslaw, H., Dill, R., Grötzsch, A., Brzeziński, A., Thomas, M. (2010) Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere, J. Geophys. Res. 115, B10406, doi:10.1029/2009JB007127.
- Gross, R. S. (2009) An improved empirical model for the effect of longperiod ocean tides on polar motion, J. Geod., 83, 635–644.
- Ray, J. (2009) Status and prospects for IGS polar motion measurements, http://acc.igs.org/studies.html
- Salstein, D.A., Rosen R.D. (1997) Global momentum and energy signals from reanalysis systems, Proc. 7th Conf. on Climate Variations, American Meteorological Society, Boston, MA, 344–348.
- Wilson C.R., Chen J.L. (1996) Discrete Polar Motion Equations for high frequencies. J. Geod. 70, 581–585.
- Zhou, Y.H., Salstein, D.A., Chen, J.L. (2006) Revised atmospheric excitation function series related to Earth variable rotation under consideration of surface topography. J. Geophys. Res., 111, D12108, doi: 10.1029/2005JD006608.

- Introduction
- Model Evaluation I
- Model Evaluation II
- Effects of FDR
- Conclusions
- Acknowledgement
- References

THIS IS A POWERPOINT PRESENT

