Updated phase center corrections for satellite and receiver antennas

Ralf Schmid

Technische Universität München, Germany

Xavier Collilieux

Institut Géographique National, France

Florian Dilssner

European Space Operations Centre, Germany

Rolf Dach

University of Bern, Switzerland

Martin Schmitz

Geo++ GmbH, Germany

igs05.atx vs. igs08.atx

	igs05.atx	igs08.atx	
GPS satellite antennas	11 years of data, 2 ACs	16 years of data, 4 ACs	
	solutions aligned to IGb00 (based on relative phase center corr.)	solutions aligned to IGS08, i.e., full consistency with reference frame	
	trend-correction due to error in mean vertical velocity of IGb00	no common z-offset trend	
	radome calibrations not considered	available radome calibrations applied	
	block mean values for satellites launched since 2006	satellite-specific estimates for 8 latest satellites	
GLONASS sat. ant.	15 months of data, 1 AC	7/2.5 years of data, 2 ACs	
Receiver antennas	robot calibrations for about 60% of the IGS stations	robot calibrations for about 70% of the IGS stations	
	GPS-specific corrections only	GPS- and GLONASS-specific corrections	

repro1 processing strategy

	CODE	GFZ	МІТ	NRCan
Elevation cut-off	3°	7°	10°	10°
Weighting	1/cos ² (<i>z</i>)	1/2sin(<i>e</i>) for <i>e</i> < 30°	<i>a</i> ²+(<i>b</i> ²/sin²(<i>e</i>))	none
Meteo data	GPT	GPT	GPT	ECMWF 6 h grids
Zenith delay	Saastamoinen dry	Saastamoinen dry + wet	Saastamoinen dry + wet	ECMWF dry + wet
Mapping function	GMF dry	GMF dry + wet	GMF dry + wet	NMF dry + wet
Zenith parameters	2 h continuous with GMF wet	1 h constants with GMF wet	2 h continuous with GMF wet	5 min stochastic ZTD
Gradient parameters	24 h NS + EW continuous	24 h NS + EW constants	NS + EW vary linearly	5 min stochastic

Griffiths et al., 2009

GPS satellite antenna PCVs

- SINEX format does not allow for antenna PCVs so far
- Impossible to derive PCVs consistent with z-offsets from SINEX files, i.e., PCVs from igs05.atx will be kept
- PCVs from current CODE solution still show good agreement

GPS satellite antenna PCOs

- Different scatter: daily (igs05.atx) vs. weekly estimates (repro1)
- Trend due to error in mean vertical velocity of IGb00 has more or less disappeared
- Certain satellites fixed in MIT and NRCan solutions (e.g., SVN 31)
- Preliminary results with ITRF2008P kept fixed

Remaining *z*-offset trends

Altamimi et al. (AGU 2009):

Ò,

 $eesa_{esoc} u^{b}$

Scale rate agreement between VLBI and SLR: 0.06 ppb/a

- → ± 0.03 ppb/a correspond to a z-offset trend of about ± 4 mm/a
- \rightarrow GPS tends to support the SLR scale rate

Absolute GPS z-offsets by SVN

Differences between ACs are much smaller than satellite-to-satellite differences within each block

Cesa_{esoc} U

Ò

z-offset bias w.r.t. igs05.atx (I)

IGS Workshop, 29 June 2010, Newcastle upon Tyne

z-offset bias w.r.t. igs05.atx (II)

- Bias w.r.t. igs05.atx:
 - CODE: 18.0 cm ± 3.9 cm
 - GFZ: **18.5 cm** ± 2.7 cm
 - MIT: 14.9 cm ± 3.5 cm
 - NRCan: 14.4 cm ± 2.8 cm
- Bias between GFZ and CODE/TUM:
 - igs05.atx (Schmid et al., 2007): about 4 cm
 - igs08.atx: 0.5 cm

 $esa_{esoc} U^{\circ}$

- Altamimi et al. (2010): Scale difference between ITRF2005 and ITRF2008P: -1.13 ppb
- Zhu et al. (2003): -1.13 ppb correspond to about +14.5 cm
- Part of the bias between CODE/GFZ and MIT/NRCan possibly due to certain fixed satellite offsets in the MIT/NRCan solutions

Bias-reduced z-offsets w.r.t. igs05.atx

- \rightarrow igs08 atx and igs05 atx agree at the **±5 cm** level
- → Preliminary values for Block IIR-B/M were not too bad

eesa_{esoc} U

Ò

GLONASS satellite antenna corrections

ESOC CODE

Mean bias between ESOC and CODE: 7.3 cm

IGS Workshop, 29 June 2010, Newcastle upon Tyne

Ò

Receiver antenna calibrations

GPS:

- 15 additional robot calibrations (e.g., for TPSCR3_GGD)
- update for 61 existing robot calibrations

Statistics for stations in the IGS network (December 2009):

Model	absolute calibration	converted field calibration	uncalibrated antenna/ radome combination
igs05.atx	62%	18%	20%
igs08.atx	69%	11%	20%

GLONASS:

esa

ESOC 11

- GLONASS-specific calibrations not considered so far
- available for about 60% of the GPS/GLONASS stations

New absolute calibration institutions

Oral presentation by **Becker et al.**: Anechoic chamber calibrations of phase center variations for new and existing GNSS signals and potential impacts in IGS processing

Poster presentation by **Bilich et al.**: GNSS absolute antenna calibrations at the National Geodetic Survey

IGS Workshop, 29 June 2010, Newcastle upon Tyne

Antenna format updates

ANTEX:

- Allow for **frequency-specific GLONASS** calibrations?
- How to store receiver-dependent carrier-to-noise patterns CN0?
- Necessary to store near- and/or far-field effects?
- Header of a single antenna type does not allow for calibrations from different institutions/antenna samples/etc.

SINEX:

- Add GLONASS-specific receiver antenna corrections (additional SITE/GLO_PHASE_CENTER block)
- Allow for satellite antenna phase center variations?

antenna.gra:

 $\mathbf{esa}_{\mathbf{esoc}} \mathbf{U}^{\mathsf{D}}$

Define antenna northing

Conclusions

- Consistency between ITRF2008/IGS08 and igs08.atx will be far better than between IGS05 and igs05.atx
- Remaining GPS satellite antenna z-offset trends are within the uncertainty of the ITRF2008 scale rate; GPS closer to SLR
- z-offset bias w.r.t. igs05.atx can mainly be explained by scale change of about 1.1 ppb
- z-offset biases between ACs are small and probably caused by single fixed offset values in certain AC solutions
- Highly improved GLONASS satellite antenna corrections
 (more satellites/tracking stations/analysis centers)
- Uncalibrated equipment is still a big problem

esa U^b

 Reference Frame Working Group has to check the impact of updated receiver antenna calibrations on IGS08

Thanks for your attention!

